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Expectation values of physical quantities may accurately be obtained by the evaluation of integrals within
many-body quantum mechanics, and these multidimensional integrals may be estimated using Monte Carlo
methods. In a previous publication it has been shown that for the simplest, most commonly applied strategy in
continuum quantum Monte Carlo, the random error in the resulting estimates is not well controlled. At best the
central limit theorem is valid in its weakest form, and at worst it is invalid and replaced by an alternative
generalized central limit theorem and non-normal random error. In both cases the random error is not con-
trolled. Here we consider a new “residual sampling strategy” that reintroduces the central limit theorem in its
strongest form, and provides full control of the random error in estimates. Estimates of the total energy and the
variance of the local energy within variational Monte Carlo are considered in detail, and the approach pre-
sented may be generalized to expectation values of other operators, and to other variants of the quantum Monte

Carlo method.
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A primary problem in solving for the ground states of
many-body quantum systems is the evaluation of
3N-dimensional integrals, where N is the number of particles
interacting in three-dimensional space. This paper considers
estimates of expectation values of a many-body trial wave
function and operator combinations, with particular emphasis
on those used for the optimization of a trial wave function
via a parametrized freedom within that wave function. Monte
Carlo (MC) methods provide a powerful numerical tool for
evaluating these integrals by expressing the exact integral as
an expectation value. By constructing a sample estimate of
this expectation value, such problems can be made tractable.

The resulting estimate is a sample taken from a random
distribution, so some knowledge of this distribution and its
relationship with the underlying “true” value must be avail-
able for it to be useful. Past work in quantum Monte Carlo
has taken this distribution to be normal, usually justified by
expressing the estimates as sums of random variables and
assuming the validity of the central limit theorem (CLT). It
has recently [1] been shown that for the usual implementa-
tion of quantum Monte Carlo (QMC) (referred to as “stan-
dard sampling”) this is only partly true for estimates of the
total energy, and completely untrue for estimates of the (re-
sidual) variance of the local energy. These two quantities are
the most prominent estimated quantities in variational Monte
Carlo (VMCQ). For the first of these the deviation of random
errors from normal may be significant for a finite number of
samples in the VMC calculation, with outliers occurring. For
the second of these the random error is not normal even in
the large sample size limit, and large outlier errors are orders
of magnitude more likely than the CLT suggests. Such non-
normal distributions of errors are a direct consequence of the
presence of singularities in the sampled quantities at the
nodal surface. These singularities may not easily be pre-
vented, and have been found to result in the failure of the
CLT for estimates of many physical expectation values
sought using QMC methods.
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In what follows, a sampling strategy, referred to as “re-
sidual sampling,” is developed that reintroduces the CLT in
its strongest form for estimates of the total energy and (re-
sidual) variance of the local energy. The paper consists of six
sections. In Sec. I the new sampling strategy is described.
Sections II and III describe the construction of estimates of
the total energy and residual variance within this sampling
strategy, and derive the distribution of random errors and
confidence intervals for the estimates. Section IV considers
the general conditions that a sampling strategy must satisfy
in order for the CLT to hold for a given estimated quantity,
justifying the choice of sampling strategy. Analytical results,
or numerical results for the example case of an isolated all-
electron carbon atom are presented in each section as appro-
priate. Section V considers how an estimate or sampling
strategy combination may be chosen such that the CLT is
valid for an estimate of a physical quantity of interest, and
the example of the electronic kinetic energy is considered.
Section VI concludes the paper.

Before commencing we note that this paper is the second
of two closely related papers. The preceding paper, [1], de-
velops the statistical description of the random error inherent
in QMC, and derives the deficiencies of the standard sam-
pling method. In the current paper, new sampling strategies
are developed, together with an analysis of the accompany-
ing random errors in estimates. This provides a method for
avoiding the deficiencies of standard sampling by controlling
the random error and introducing a valid CLT for an estimate
of interest.

I. GENERAL SAMPLING IN VMC,
AND A SAMPLING STRATEGY

Generally, VMC involves generating a statistical estimate
of the expectation values of an operator of the form

RO
W)

Expressing this in terms of the statistical expectation of a
function G;='g4 sampled over a random distribution of

(1)
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3N-dimensional vectors R, with probability density function
(PDF) P(R), gives

_E[Gy/P:iP]

E[y*/P;P] ° @)
where E[x;P]=/xPdR is the definition of the expectation.
The function G,(R) is the “local value” of the operator or
trial wave function combination. This is true for any general
distribution P.

This can also be expressed as statistical estimates con-
structed from samples taken from P. Introducing the notation
A.[f] for an estimate of f constructed using r samples, gives

E[GLy*P;P]+Y,
[GLyPIPiPI+Y, W

AlG]= E[#P;P]+X, o

3)

where W,, Y,, and X, are random error variables. The ran-
dom variable W, is not normal, but Y, and X, may be, and
may be correlated to some degree.

The standard sampling solution is to choose P=\y?, with
N an unknown normalization constant, so that

ALGl=>3 GR)=G+Y,, @

and X,=0. As has previously been shown [1], singularities in
G, can easily prevent the distribution of Y, from being nor-
mal by invalidating the CLT. Although standard sampling
provides the simplest analytic form for an MC estimate,
there is nothing to suggest that it is optimum for controlling
the statistical error in A,[G].

Returning to general sampling complicates the analysis,
but provides a means of influencing the random error present
in estimated quantities since the distribution of the random
error W, is influenced by the choice of sampling distribution
P.

Writing the general sampling distribution as

s

P=\"—, (5)

where N is an unknown normalization factor, provides the
estimate of G in the more concise form

ALG] E[wG,;P]1+Y, ©)
T E[wi P14 X,

In order to control the statistics of estimates of the total
energy and (residual) variance, we begin by introducing the
local energy E; = ¢‘1f1 Y, defined in terms of the Hamiltonian
operator H. We then limit ourselves to weights that are func-
tions of the local energy w(E}), and to operators of the form
g= f(I:I). Expectation values of this operator, F, then have
MC estimates given by
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2 w(E,)

n=1

P(E) = P(E), (7

where E,, is the nth independent identically distributed (IID)
random variable defined as the sample local energy at R,,
and distributed as

IR A TS U
PO =10 ) e R wp e @

where N’ is a further unknown normalization constant, and
the integral is taken over a 3N—1-dimensional surface of
constant local energy [1]. In the last line, P(E) is the dis-
tribution of local energies that occurs for standard sampling.

Note that w(E)=1 results in standard sampling, with the
E~* leptokurtotic tails for P (E), and the resulting CLT issues
for VMC. The essential feature of this approach is that dif-
ferent choices of weight function, w(E), provide different
estimators for F, with a different distribution of random error
in the estimates.

Residual sampling is defined by choosing the weight
function to take the particular form

62

)= R e

)

where (E,, €) are parameters that influence the random error
in the estimate. Equation (9) may be interpreted as interpo-
lating between a perfect sampling of the numerator and de-
nominator of an estimate of the residual variance. This
weight function ensures that, provided f(E) increases qua-
dratically or slower in the limit of E approaching infinity
from above or below, the sampled quantities will be bounded
from above and below even in the presence of singularities
in the local energy. It is the introduction of this boundary to
the sample values that results in the reintroduction of the
CLT, as described in the next section. A further significant
difference between standard and residual sampling is that the
former does not sample in the region of the nodal surface,
whereas the latter does.

From this point on, w(E) refers to Eq. (9), and the accom-
panying distribution of samples in multidimensional space is
given by

P R) =N (R)/w(EL(R)). (10)

Sampling and estimation using this distribution is straightfor-
ward to implement in standard Monte Carlo algorithms by
using the new distribution at each Metropolis step, and by
including w(E) when evaluating estimates of expectation val-
ues.

Values are required for (Ej,€) to define the sampling
strategy, but only influence the distribution of random errors
in the estimate. Optimum values (in the sense of resulting in
the smallest random error) exist and may be sought for a
given calculation, but roughly speaking a good choice of E,
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can be expected to be an approximate total energy, and a
good choice of € an estimate of the accuracy of E,.

Two limits exist. For e— the sampling is as for the
standard sampling. For (E,, €)— (E,,,0) (with E,,, the ex-
pectation value of the trial wave function/Hamiltonian com-
bination) the sampling is perfect for the numerator of the
residual variance estimator, and all of the statistical error is
in the denominator. For any error in E, and any finite value
of € this sampling scheme is somewhere between these two
extremes, hence the numerator is sampled more efficiently at
the cost of introducing more error in the denominator. Of
course this sampling strategy is only of interest if the esti-
mate converges to the true value for increasing sample size
(r), has a controlled error, and is insensitive to the values of
the parameters (E, €).

Now that the residual sampling strategy is defined, esti-
mates for the total energy and residual variance are consid-
ered. These are of interest in their own right, and from the
point of view of wave-function optimization methods. The
next two sections define these estimates, analyze their statis-
tical properties, and obtain distributions of the random error
in the large r limit. In addition, numerical VMC calculations
for an all-electron carbon atom are performed using both
standard and residual sampling strategies, in order to demon-
strate the new sampling strategy for a real system.

It should be borne in mind that many statements about
standard sampling are not true for a more general sampling
method. An important example is that the residual variance
that is to be estimated is not the second moment of the
sampled quantity, and is unrelated to the error in the total
energy estimate.

II. TOTAL ENERGY ESTIMATES
AND CONFIDENCE LIMITS

The residual sampling estimate of the total energy takes
the form

r

> w(E,E,
n=1

Ar[Etot] = r—’
> wE,)

n=1

P(E)=P/E). (11)

In the standard sampling limit P(E) possesses E* asymp-
totes [1], but for finite € the w(E)~" term in Eq. (8) results in
E~? asymptotic tails.

In order to characterize the random error of this estimate,
due consideration must be taken of the estimate being made
up of a quotient of two random variables. Although w(E,)
and E, are causally related there is no reason to expect this
causal relationship to hold between sums of these random
variables, hence the numerator and denominator are only
partially correlated. This observation provides the required
route to describing the statistics.

Defining
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(Y., X,) = (W(E,)E,.w(E,)) (12)

provides a bivariate random variable with a PDF that is non-
zero only on a parametric curve. A normalized sum of these
IID random bivariates gives a new bivariate

(13)

(M..M,) = (12 Vo3 xn),
T p=1 T p=1
with a PDF P,(u,,u;) that can be derived using a standard
convolution or Fourier transform approach [2], and limit
theorems obtained. Note that P.(w,,u;) is not limited to a
parametric curve in the two-dimensional space unless r=1
[19].

The total energy estimate is then provided by

M
Ar[Emz] = M_2 s
1

(14)

and associated confidence limits must be obtained from the
bivariate distribution of the numerator and denominator in
this expression.

A. Distribution of total energy estimates

The distribution of errors in the estimate is most easily
arrived at by initially assuming that the bivariate CLT is
valid, and then proving that it is so. For a valid bivariate CLT
the random bivariate (M,, M) possesses the PDF [2]
12

—q2/2

— 15
27l (13

Pr(y’x) =

in the large r limit. The function ¢ is defined in matrix no-

tation by
X - T X —
q2=r(( Ml)) o Cmm) )
0= o) (v = m2)
where (u,, u;)=(E[wE],E[w]), and C is the covariance ma-
trix defined by the elements

(16)

c;j=E[WE" 2] - ElwE™E[wE™], (17)

with i and j e {1,2}. This is the bivariate CLT.

To demonstrate that the CLT is valid it is sufficient to
show that all of the co-moments of the original distribution
exist [20], or that

V= E[(WE)"(w)"] (18)

exists for all non-negative m and n. Since the integrand is
finite for all E, and the asymptotes of w(E) and the sampling
distribution are known, it follows that the inequality

* 1

1+ |E|2n+m+2dE

Yt < J |Pow™ " E"|dE < a J

(19)

is true for some finite a. Performing the integral explicitly
gives
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pr<

2T S ( T ) ’ (20)

csc
2n+m+2 2n+m+2

and hence V™" is finite for all non-negative m and n.

This demonstrates that the bivariate CLT is valid, and in
addition, that asymptotic power law behavior does not occur
in the PDF of the random variable (M,,M,) for finite r [3].

Now that the validity of the bivariate CLT is established,
the distribution of the quotient of the two random variables
must be considered in order to characterize the error in the
total energy estimate. Two approaches to this problem sug-
gest themselves. The most direct route is to extract the PDF
of the quotient directly from the bivariate normal distribu-
tion. An alternative approach is to define a two-dimensional
confidence region for the bivariate distribution. Both are ex-
amined here, with the second proving to be the most appro-
priate.

A PDF of the quotient is defined in terms of the bivariate
PDF via the standard formula [4]

0 400
P(u)=- J XP,(y =ux,x)dx + J xP,(y =ux,x)dx.

0

—o0

(21)

Evaluating this explicitly using Egs. (15)-(17), and taking
the large r limit a second time gives

P.(u) = r'? (crip = cpp)u + (Coppy = Cotn)
' V27 (cpju? = 2¢ppu + cp)¥?
2
r —
X exp| - L 2t | (22)
2 (C“M - 2C12M + C22)

hence the distribution of quotients is clearly not normal in
the large r limit, even though P,(u,,u;) does approach a
bivariate normal distribution. However, the width of this dis-
tribution scales as #~!/? in the same manner as a normal dis-
tribution, and for (¢;y,cz, 1) —(0,0,1) this distribution of
total energy estimates approaches a normal distribution with
higher power co-moments becoming undefined in the limit.

For the general covariance matrix the asymptotic behavior
in u is given by

2
lim P, () = ' enpa = oy xp{— fﬂ}i
|u‘4>:x: " \/;T C?/lz 2C11 uz’

(23)

hence the distribution of total energy estimates possesses nei-
ther a mean or a variance. At first this seems like a serious
problem, but it turns out to be irrelevant for two reasons.
The magnitude of the power law tails in Eq. (23) de-
creases exponentially as the number of sample points in-
creases, which means that for any reasonable set of param-
eters (and for a wide range of unreasonable parameters) the
chance of a sample point appearing in these u~2 tails is van-
ishingly small. A typical numerical value for the coefficient
of u™2 in the asymptotic form for calculations actually carried
out is ~ 107132, In addition, the weight w(E) falls within the
closed interval 0<X,=1, and Y, is also bounded, hence for
finite sampling these tails do not actually occur. In effect the
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FIG. 1. Confidence regions defined for a bivariate normal dis-
tribution P,(y,x), in order to obtain confidence intervals for ratios
of the two associated random variables. The gray ellipse follows a
line of constant P,, and the straight lines enclose a wedge that
contains lines of gradient y/x with probability « (see main text).

deviation of the finite r distribution from the large r limit
conspires to remove these undesirable tails.

The analytic form given above is not the most elegant
approach to visualizing the distribution of gradients. Confi-
dence intervals for the estimate are more clearly defined di-
rectly from the bivariate normal distribution by generalizing
the one-dimensional confidence interval to a two-
dimensional confidence region in the space of the bivariate
PDF. To achieve this the approach of Fieller [5] is adopted,
and is best described geometrically (see Fig. 1).

An ellipse of constant probability density is defined via a
new parameter ¢, and the equation

(= 1) )Tc_l((x—m)

(=) (=) ) ’ @4)

2
qO(aellipse) = r(

which defines an elliptical probability region that contains
(M,,M,;) with probability a,;,s-

A “wedge” is then defined as the region between two
straight lines that pass through the origin and are tangential
to this ellipse of constant probability density. The region con-
tained inside this wedge then defines a second confidence
region, that contains (M,,M;) with probability «. Fieller’s
theorem essentially provides g as a function of one variable,
either ;. (via the Hotelling’s T? distribution in the large r
limit) or « (via the student’s ¢ distribution in the large r
limit). The second of these, g(a), provides a confidence in-
terval for the total energy estimate from the confidence
wedge, since a fraction a of (M,,M)) provides total energy
estimates that fall between the bounding lines of the wedge.

Solving for the gradient at the boundaries of the a confi-
dence wedge gives

ll < Ar[Etot] < lu

with confidence «, (25)

where [, are the gradients of wedge boundaries and are
given by
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(o = gaen) =N = qoenn) = (riad = qoen) (rass — goean)

ll,u

and
go(@) =2 erf (). (27)

For this confidence interval to be finite the ellipse must
not cross the x=0 line since, if it does, the confidence inter-
val may be A[E; ]>1,, A[E]<l, or even —o <A][E,]
<o (these two cases are referred to as “exclusive un-
bounded” and “completely unbounded” respectively, with
the usual case “bounded” [5]). A check for whether these
“unbounded boundaries” occur is straightforward to imple-
ment, and is far from being satisfied for systems of interest.
In addition, finite sample size and bounded samples ensure
that the unbounded cases never occur for the actual (finite r)
distribution of errors.

The magnitude of the confidence interval scales as /. It
is not immediately apparent what type of estimate is pro-
vided by this quotient of sample means. It is a statistical
estimate, as in the limit of increasing r it approaches the true
total energy, however, it is not an unbiased estimate, as its
distribution has no mean. In fact no unbiased estimate of the
quotient exists, since the mean of a quotient of random vari-
ables is not equal to the quotient of the mean of the random
variables. Equation (25) provides a “central” estimate, in that
the probability that a sampled estimate value is higher than
the true total energy is equal to the probability that a sample
estimate value is less than the true total energy [5].

B. Analysis of data

In this section calculated total energies and confidence
limits for an isolated all-electron carbon atom are considered,
both using standard sampling and residual sampling. A nu-
merical multiconfiguration Hartree-Fock calculation was per-
formed to generate a multideterminant wave function con-
sisting of 48 Slater determinants [corresponding to seven
configuration state functions (CSF)] using the ATSP2K code
of Fischer et al. [6]. Further correlation was introduced via
an 83 parameter Jastrow factor [7], and a 130 parameter
backflow transformation [8]. This 219 parameter trial wave
function was optimized using a standard variance minimiza-
tion method [9], resulting in Eyy;-=-37.8344(2) a.u., com-
pared with the “exact” [10] result of —37.8450 a.u. Of those
trial wave functions that can practically be constructed and
used in QMC this may be considered to be accurate, and
reproduces 93.2% of the correlation energy at VMC level.
Unless otherwise stated the parameters (E, €) are taken to be
the estimated total energy and variance of the local energy
taken from a small standard sampling calculation. This
choice is justified in what follows.

The analysis of the sampled local energies uses the for-
mulas derived above, with the expectation integrals replaced
by the normalized sums of samples that are the standard

2 2
rpy —dqoc

; (26)

unbiased estimates. The sampled estimate of the quantity x is
denoted X, and sample estimates of the bivariate mean and
covariance matrix were calculated. The primary aim of ana-
lyzing the data is to characterize the statistics of the random
error in sample estimates for both residual and standard sam-
pling. Generating 10° local energy samples, breaking this set
of samples into subsets of various sizes and analyzing each
of the subsets individually provides independent sample es-
timates for the total energy and variance, and these are then
analyzed as a set of samples from the underlying distribution
P..

Within residual sampling the sample estimate of the bi-
variate mean obtained from r samples is

o 1< 1<
(IU’ZUU“I) = (;E WnEn’ ;2 Wn) > (28)
n=1 n=1

and the sample estimate of the covariance matrix elements
take the form

, 1 < )
Cn= E (WnEn_ Mz)z,
r—1,5

r

. 1 . N
Cp= _12 (W,E, — o) (w, — 1),

~ ta=l

, 1< A
= 12(Wn—ﬂl)2~ (29)
— L=l

r

These provide an estimated value of the total energy and
accompanying confidence limits

(30)

and

I,<E, <I, withconfidence a, (31)

with the limits given by
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Ao 24 [(~ A 24 A2 24 ~2_ 24
i _(”,U«lﬂz—qoclz)i\'("Mlﬂz—qoclz)z—(’”ﬂl—qocll)(”ﬂz—qoczz)

u/ll =

and ¢, a function of the required confidence interval via Eq.
(27).

If required, further information on the deviation of this
distribution from the large  limit is available from statistical
estimates of higher co-moments, a fundamentally different
situation to the standard sampling case.

Figure 2 shows estimates of the seed PDF, P (E), con-
structed from taking 10 samples of the local energy, binning
these into intervals, and normalizing [11]. Estimates are con-
structed from both standard sampling, for which a weight of
1 per sample is binned into the chosen energy intervals, and
residual sampling, for which a weight w(E,) is binned. In
addition the figure shows a “model” distribution of the form

e (33)
m 6'4 + (E - Emz)4

with a mean and variance of E,m and 6> whose values are
obtained from the data using the usual unbiased estimates.
This is chosen as a simple analytic form that reproduces the
E~* asymptotic behavior that has been shown to be present in
the seed distribution [1].

It is clear that residual sampling takes into account the
statistics of the local energy for large deviations from the
estimated total energy far more precisely than standard sam-
pling. The energy range of the figure is chosen to show the
breakdown of standard sampling, but for residual sampling
the estimated PDF shows the same precision over an interval
of around 1000 a.u. In addition, the expected E~* asymptotic
behavior (and agreement with the model distribution) are
reproduced by the estimate over this range. This demon-
strates a distinct difference between the two approaches—
standard sampling does not sample the nodal surface and this

100 -

1073 +

Pp(E) (auw.™)

E — Ey (au.)

FIG. 2. The seed probability density function estimated by a
histogram of r=10° sampled local energies using standard sampling
(black) and residual sampling (gray). These are results for an accu-
rate all-electron carbon trial wave function, as described in the text.
Also shown is the model distribution of Eq. (33) that reproduces the
mean and variance of the samples.

") 2 A
Fiy —4qoC11

; (32)

results in weak statistical convergence to the underlying
PDF, whereas residual sampling does sample the nodal sur-
face successfully, resulting in a faster statistical convergence
to the underlying PDF.

Residual sampling requires a choice of parameters to
specify the sampling PDF, (E,€). Although the values of
these parameters influence only the statistics of the random
errors in estimates, it is important to examine how variations
in these parameters change the confidence ranges for esti-
mates. Figure 3 shows the estimates of /,—/; that result from
the numerical calculations as a function of e. Each datum
was obtained using r=10° samples, for a range of € values,
and for a fixed Ey=—-37.8344 a.u., the standard sampling to-
tal energy estimate for the trial wave function. The confi-
dence range possesses a well defined minimum for € close to
the standard deviation of P, and for increasing € ap-
proaches the standard sampling limit. The optimum confi-
dence range (assumed to be at €=3) is approximately 75% of
that resulting from standard sampling.

Also shown in the figure are the confidence ranges ob-
tained analytically for the model distribution of Eq. (33). The
figure shows the same general behavior for the model and
actual distribution, with higher accuracy for the actual re-
sults. The confidence range is shown as several functions of
€, with E; chosen to overestimate the true mean value
(known for the model distribution) by an increasing amount

0.0014

0.0012

lu — ll (a.u.)

0.001 ' ' ' '
0.5 1 1.5 2

e (a.u.)

FIG. 3. Confidence limits for estimates of the total energy for
residual sampling, as a function of (E|, €). Data points (with a fitted
Padé form to guide the eye) are calculated for E, taken as the
standard sampling estimate of the total energy. Gray curves are the
confidence limits resulting from the model distribution of Eq. (33),
with A the positive deviation from the exact VMC energy. The
horizontal line at /,—[;=0.001 436 a.u. is the standard sampling
limit corresponding to € approaching infinity.
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I I
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0005 L

0.94 0.96 0.98
fi1

FIG. 4. The statistics of estimate values of the total energy.
Scattered points are 100 estimated values of the means whose quo-
tient provides total energy estimates. The ellipse is the estimated
confidence ellipse, and the two straight lines enclose the estimated
confidence wedge described in the main body of the text. For a
valid bivariate CLT, 68.3% of estimates fall within the confidence
wedge.

A. The results show that for the model system the presence
of an improved confidence interval is resilient to the devia-
tions of the parameters E, and € from their optimum values.

For the model distribution the optimum reduction in the
error relative to standard sampling is a factor of 0.765, which
occurs for (Ey, €)=(E,,;,o) in the large r limit. The results
suggest that an inaccurate estimate of E,,, can be used for E
(an accuracy of better than 0.5 a.u. should be sufficient), and
that an order of magnitude estimate of the variance of the
local energy may be used for e. Should this be insufficient it
is always possible to optimize the confidence interval itself
with respect to variations in (E, €).

In calculating the confidence intervals in Fig. 3 it is im-
plicitly assumed that the large r limit has effectively been
reached. It is desirable to convincingly show that this is in
fact the case for the example calculation considered here.
First a “big” estimate of the bivariate mean and covariance
matrix is constructed from the 10° sample local energies.
Then this set of local energy samples is separated into 10°
blocks of 10* samples, and 10? estimates of the bivariate
mean are constructed from these blocks of data.

Figure 4 shows the confidence ellipse and confidence
wedge of the r=10* estimates predicted using the big esti-
mate of the bivariate mean and covariance matrix. In addi-
tion, the 10% ({,,4,) estimates are also scattered over the
figure. Of the sampled bivariates, 62 fall within the 68.3%
confidence wedge, in good agreement with the bivariate
CLT, and no suspicious outliers occur. It should be noted that
a linear combination of the means is plotted on the vertical
axis of the figure to make the finite width of the confidence
wedge visible—otherwise the correlation between the
sample means dominates and all samples appear to fall on a
line passing through the origin and with a gradient given by
the total energy. This data supports the suitability of the re-
sidual sampling strategy, bivariate CLT, and the accompany-
ing interpretation of error.

Finally, an estimate of the PDF for total energy estimates
is constructed from the numerical data, for both standard and
residual sampling. Dividing the 10® samples into 103 blocks
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FIG. 5. Estimated PDFs for total energy estimates constructed
from different sampling strategies. The unfilled solid curve is for
standard sampling, and the gray filled curve for residual sampling.
In both cases, a kernel estimate of the PDF was constructed from
103 total energy estimates, with each total energy estimate con-
structed from r=103 samples.

of 10° samples provides 10° sample estimates of the total
energy in each case. A kernel estimate [11] of the distribution
of total energy estimates is then constructed using

E- Ar[Etat] )

Y (34)

SRRl
mh
where the kernel ® was chosen to be a centered top-hat
function of width 1, m=10? is the number of estimates, and
h is the width parameter, chosen heuristically to provide the
clearest plot.

The estimated P,(E) for standard and residual sampling is
shown in Fig. 5. Although E~* asymptotic tails are known to
be present in the distribution for standard sampling total en-
ergy estimates, for this particular calculation they are not
significant at an achievable statistical resolution. There is no
guarantee that this will be the case for other calculations [1].
For residual sampling the bivariate CLT is valid in its stron-
gest form, hence such persistent leptokurtotic tails are guar-
anteed to be absent.

Assuming the large r limit has been reached, it is apparent
that residual sampling provides an improved confidence in-
terval (~75% of the standard sampling interval), with an
estimated total energy of —37.8344(23) a.u. for standard
sampling, and —37.8346(16) for residual sampling. To put
this another way, residual sampling requires approximately
half as many samples as standard sampling to achieve a
given accuracy.

III. RESIDUAL VARIANCE ESTIMATES
AND CONFIDENCE LIMITS

The residual variance Vg is defined as the integral of the
square of the residual associated with the Schrodinger equa-
tion,

_ (U - Eg)(H - Eg)|)
(i)

where E; may be considered as a variational parameter [ 12].
In terms of expectation of functions over the seed distribu-

; (35)
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tion of residual sampling P,, this takes the form

_ BB Eg)’]

2= ] (36)

The parameter E; may be varied to minimize the residual
variance, or taken to be the total energy (the two are equiva-
lent if the expectations in the above equation are not esti-
mated).

For standard sampling the CLT is not valid for estimates
of the residual variance [1]. This, together with the impor-
tance of the residual variance in wave-function optimization
methods, makes the development of an improved residual
variance estimator desirable.

A. Distribution of residual variance estimates

Taking E; to be the total energy gives Eq. (36) in the
form

~ E[wE?] (]E[WE] )2

2= ]\ ] (37)

with a statistical estimate of this quantity provided by replac-
ing each expectation by a normalized sum of samples.

A rigorous treatment of the statistics of this estimate re-
quires a generalization of the bivariate analysis to the trivari-
ate case using

(A,.B,.C,) = w(E,)E}.w(E,)E,,w(E,),  (38)

and the accompanying unbiased estimates of the means that
form the partially correlated random trivariate,

e, lw, Ix
(Mo, M, M) = (—2 An—2 B~ cn), (39)
T =1 T =1 rp=1
to provide the estimated residual variance as

M, (M)’
AlVg]l= M, <M0> . (40)
Confidence intervals for this quantity may, in principle, be
obtained by an analogous route to the bivariate case, by ob-
taining an (unbiased) estimate of a 3 X3 covariance matrix
and defining a confidence region in the three-dimensional
space to provide a trivariate CLT and an analog of Fieller’s
theorem. This added complexity is not considered to be nec-
essary here.

Instead, E; is interpreted as a variational parameter,
which results in an estimate of the residual variance that
takes a bivariate form, and that reproduces standard sampling
for w=1 and finite r. A random bivariate is defined as

(Ynsxn) = (W(En)(En - EG)zaw(En)) . (41)
The associated bivariate
1 ., I<
(My,M,) = (—E Y.~ 2 x,,> (42)
r— 111:1 I =1

provides the random variables whose quotient is an estimate
of the residual variance
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AlVg]l=—=-. (43)

The prefactor in the definition of M, ensures that the above
estimate is unbiased for the case of standard sampling. As for
total energy estimates, the bivariate CLT is assumed to be
valid in order to define the distribution of (M,, M), and then
shown to be valid.

Provided the CLT is valid, the large r PDF takes the form

172

1 2
Py)=5- éwe-q 7, (44)
and
) (X—M1)>TC_1<(X—M1)> 45
i _r((y—uz) OV-m)/ 43)

The bivariate mean (u,,u;) and covariance matrix C are
defined in terms of the supplementary variables (x,,x)
=[w(E-Eg)*,w] by

(pt2, 1) = (E[x2 ], ELx, 1), (46)

and
c;j = Elxa;] = Elx,]E[x;] (47)

for i and j € {1,2}. This is the bivariate CLT.

To show that this CLT is valid it is sufficient to show that
all of the co-moments of the original distribution exist. A
general co-moment can be expressed in terms of the weights
and energies as

Y= K5 X (48)
2m 2m
=2< L )Eém_kﬂﬂ[w’”*"Ek], (49)
k=0

hence it is required to show that E[w"*"EX] is finite for all
m,n and 0 <k =< 2m (this includes the co-moments associated
with E,,,). Noting that the integrand is finite for all E, and
possesses asymptotes proportional to EX2-20m7) provides the
inequalities

o0

1

|P W™ EXdE < a'J WdE,

E[Wm+n Ek] < f

(50)

for some finite «, or that

2ma T
E m+nEk < ( )
b ] 2—k+2(m+n)CSC 2—k+2(m+n)
(51)

This inequality is valid for all non-negative m,n and 0=k
=2m, and hence all co-moments exist. It then follows that
the bivariate CLT is valid and no asymptotic power law be-
havior occurs in the PDF of (M,,M;). Converting this bivari-
ate distribution into a description of the statistics of the re-
sidual variance estimate proceeds exactly as for the total
energy estimates in the previous section. All that differs is
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the definition of the bivariate mean and the covariance ma-
trix.

From this point on, and in all numerical results, we
choose E;=E,,,, with E,, taken as the estimate of the previ-
ous section. Any deviation of E; from the true expectation
value of the total energy of ¢ does not invalidate the varia-
tional principle for which the residual variance is of interest,
but it should be borne in mind that the relatively small ran-
dom variation in Ej is not taken into account in this error
analysis.

B. Analysis of data

Returning to the all-electron carbon atom, a VMC esti-
mate of the residual variance is required. The same local
energy samples used for the total energy estimates are used
to construct the residual variance estimates.

First, a central estimate of the total energy is constructed,

> w,E,
= (52)

-
2w,
n=1

A

tot =

and this is used to construct an estimate of the mean bivariate

r

P
2 Wn(En - Etot)z’;z Wn) > (53)
n=1

(i, ) = (—
r=1,5

and covariance matrix elements

N S
Cpn= r—1 2 [Wn(En - Emt)2 - /J’Z:lzv
— tn=1

1 < -
Ci2= :2 [Wn(En - Etot)2 - M2][Wn - /‘Ll]’

2 [Wn_ la’l]z-

n=1

(54)

R 1
Cpy=—"
S|

Equations (53) and (54) provide the sample estimate of
the residual variance as

Va=t2, (55)
M1
with
[, <Vg<I, with confidence a, (56)

and [, defined in terms of the new (4, 4,) and C using the
Fieller’s theorem and Eq. (26). As before, further informa-
tion on the deviation of this distribution from the large r limit
is available from estimates of higher moments.

Results for the all-electron carbon atom are now consid-
ered in the same manner as for the total energy estimates of
the previous section, and for the same reason. Beginning
with the influence of the sampling parameters (E,, €), on the
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FIG. 6. Confidence limits for estimates of the residual variance
for residual sampling, as a function of (Ej, €). Data points (with a
fitted Padé form to guide the eye) are calculated for E taken as the
standard sampling estimate of the total energy. Gray curves are the
confidence limits resulting from the model distribution of Eq. (33),
with A the positive deviation from the exact total energy. The stan-
dard sampling limit for this quantity that corresponds to € approach-
ing infinity is not defined.

statistical error, Fig. 6 shows estimates of /,—/; that result
from the numerical calculation for a range of values of e.
Each datum was obtained using r= 10° samples, and for a
fixed Ey=-37.8344 a.u., the standard sampling total energy
estimate for the trial wave function. As for the total energy
estimate, the confidence range possesses a well defined mini-
mum for € close to the standard deviation of P 2. However,
unlike the total energy estimate, this is not a finite reduction
of the CLT confidence range of standard sampling, since for
standard sampling the CLT confidence range is not defined.
In other words [,—1; is unbounded as e increases, and no
sample estimate of the standard sampling confidence interval
is shown as such a quantity does not exist.

The figure also shows the confidence ranges resulting
from the model seed distribution [Eq. (33)], obtained analyti-
cally and plotted as functions of € for E, chosen to overes-
timate the true mean value (known for the model distribu-
tion) by A. The analytic form shows no upper bound, as
expected, and suggests that the usefulness of the confidence
range is resilient to the deviations of the parameters E( and €
from their optimum values. Given that no “standard sam-
pling confidence range” exists, the case for improved accu-
racy for residual sampling is stronger than for the total en-
ergy estimate. Parameter values may be chosen by the same
criteria suggested for total energy estimates, or by minimiz-
ing the confidence interval itself.

To justify the validity of having reached the large r limit
with real numerical results, and the related validity of the
bivariate CLT, the 10° sample local energies were used to
generate 10? estimates of the bivariate mean made up of r
=10* samples each, and an estimate of the distribution from
which these are sampled. The quantity E; was defined as the
estimate of the total energy defined in Sec. II, evaluated
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FIG. 7. The statistics of estimate values of the residual variance.
Scattered points are 100 estimated values of the means whose quo-
tient provides residual variance estimates. The two straight lines
enclose the estimated confidence wedge described in the main body
of the text. For a valid bivariate CLT, 68.3% of estimates fall within
the confidence wedge.

separately for each block. Figure 7 shows a confidence
wedge predicted for the estimates constructed from the
sample covariance and mean taken from all the samples, and
also shows the 10? (i, f1,) estimates scattered over the fig-
ure. Of the sampled bivariates, 66 fall within the 68.3% con-
fidence wedge, in agreement with the bivariate CLT, and no
suspicious outliers occur. This also justifies the bivariate in-
terpretation of the residual variance estimate by showing that
the statistical variation in E is not significant. Note that the
degree of correlation (although not complete) prevents the
confidence ellipse being visible. This data supports the suit-
ability of residual sampling, the bivariate CLT, and the ac-
companying interpretation of error for obtaining estimates of
the residual variance. This is fundamentally different to the
standard sampling case, where no CLT is valid and the sta-
tistical error is uncontrolled.

Finally, a kernel estimate to the PDF of the residual vari-
ance estimate is constructed for both standard and residual
sampling in order to compare the distributions of error that
result in the two cases. The estimated PDFs were constructed
by dividing 10° local energy samples into 10° blocks of 103
samples, constructing a residual variance estimate for each
block (using a block by block total energy estimate), and
then constructing a kernel estimate using Eq. (34). Figure 8
shows the resulting estimated PDFs.

The estimated standard sampling distribution clearly dem-
onstrates the invalidity of the CLT, leptokurtotic tails, and
accompanying outliers predicted for standard sampling in a
previous paper [1]. The estimated residual sampling distribu-
tion reflects the error analysis given earlier in this section,
providing numerical evidence that the large r limit of the
bivariate CLT has been reached.

On comparing the properties of the two distributions, two
main points suggest themselves. Due to the presence of
power law tails for standard sampling, it provides a far wider
distribution and is more vulnerable to outliers than residual
sampling. In addition, for increasing r, the statistical spread
of estimates scales as "3 [1] and r~'? for standard and
residual sampling, respectively, hence standard sampling be-
comes even less accurate relative to residual sampling as the
number of samples increases.
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FIG. 8. Estimated PDFs for residual variance estimates con-
structed from different sampling strategies. The unfilled solid curve
is for standard sampling, and the gray filled curve for residual sam-
pling. In both cases, a kernel estimate of the PDF was constructed
from 10° residual variance estimates, with each residual variance
estimate constructed from r=10> samples.

Essentially, these data tell us that the random error in
estimates of the residual variance is very different for stan-
dard and residual sampling. The CLT fails for standard sam-
pling, but is reintroduced for residual sampling, so residual
sampling provides a confidence interval for the residual vari-
ance, whereas standard sampling does not. In addition, the
data suggest that the large » limit is easily reached for prac-
tical sample sizes. The model seed distribution of Eq. (33)
and the numerical data for the carbon atom suggests a stan-
dard sampling error one to two orders of magnitude larger
than f60r residual sampling for r=10°, and this ratio increases
as r'/S.

IV. GENERAL SAMPLING AND MOMENTS
OF SEED DISTRIBUTION

The analysis given above has involved only a particular
sampling or weighting function combination, referred to as
residual sampling. A more general sampling function is now
considered in order to show how the presence of E~*
asymptotic behavior in the “standard” distribution of local
energies P, limits the quantities that may be estimated, and
the statistics of the random errors in those quantities that can
be estimated.

The influence of the chosen weighting or sampling func-
tions on the applicable limit theorems can be characterized
by its asymptotic behavior, specifically by the inverse power
law behavior of the weight function as singularities in the
local energy are approached. A large E power law behavior
of woc|E|™ is taken for the weight, and used to estimate the
qth physical moment of the seed distribution,

mq=f P,sz"dE. (57)

—o0

The limit theorem valid for this moment will also be valid
for the expectation of any function of E that increases as E?
in the large |E| limit.

The distribution of an estimate of this moment will satisfy
the CLT in its strongest form if all of the co-moments for the
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sampling strategy characterized by w(E) exists, that is, if

V= B[(wE!)" (w)"] (58)
exists. This is the case if the inequalities
* ” 1
P < f B |P " EdE < a f LTHE pE—— dE
(59)

are satisfied for all non-negative m, n, and some finite . The
integral on the right-hand side is finite provided that

3
n>1——+m(g—l), (60)
4 p
which is true for all non-negative m,n provided that
p<3 and ¢=p. (61)

If this pair of inequalities is satisfied then the least general
version of the bivariate CLT (that provides the strongest lim-
its on the deviation from a Gaussian distribution) is valid for
the estimated moment. This is the most desirable case, and
precludes the presence of power law tails for finite r. Note
that this inequality demonstrates that it is not possible to
estimate third moments or higher of the Py, which is not
surprising given that these integrals are not defined. The
value of p is an exclusive upper limit on the moments that
can be estimated with strong limits on their statistical error,
and cannot be greater than or equal to 3.

The most general version of the bivariate CLT that pro-
vides no limit on the deviation from a Gaussian PDF for
finite r is the bivariate form of the Lindeberg theorem [2].
For this theorem to hold it requires only the first- and
second-order co-moments of the estimate to exist, resulting
in the weaker limits

(62)

so there is a small range of ¢ values between the existence of
all moments and the complete invalidity of the bivariate CLT
where power law tails will persist into the distribution of
statistical errors. No integer ¢ falls in this region.

The ¢,p values for which all moments exist tells us that
the CLT with the strongest limits on finite sample error is
valid for estimates of all the expectations that exist for the
trial wave function. Standard sampling does not provide this
ideal strategy of sampling and estimation, and many of the
expectations that exist have estimates that either satisfy the
CLT with the weakest limits on the finite sample error, or do
not satisfy the CLT. The case p=2 and g=1,2 corresponds to
the total energy and residual variance estimates for residual
sampling given in the previous two sections.

This analysis is limited to expectations that can be ex-
pressed in terms of the local energy field variable. It is pos-
sible to generalize the analysis given to estimates of other
quantities in VMC, since expectation values of operators are
generally formulated as expectations of field variables (the
local energy in the previous analysis) over the physical PDF
of the system (the N\¢? in the above). This can always be

PHYSICAL REVIEW E 77, 016704 (2008)

reformulated through a change of random variables to pro-
vide the estimate as a means of a lower dimensional PDF.

V. OTHER ESTIMATES

It has been shown [1] that for standard sampling the CLT
fails and the generalized central limit theorem takes its place
for a variety of estimates of physical quantities. This is a
direct consequence of singularities appearing in the sampled
field variable, and may be dealt with using alternative sam-
pling.

An ideal estimator would be one for which the strongest
form of the CLT provides confidence intervals for the esti-
mated quantity. Two complementary approaches to creating
such estimators naturally suggest themselves. A first method
(essentially that described in the preceding sections for total
energy and residual variance estimates) is to choose a new
sampling strategy such that power law tails in the sampled
quantities are removed. A second method is to construct an
alternative estimator by adding terms to the sampled quantity
that have a mean of zero, hence preserving the large sample
size limit of the estimated quantity, but modifying the distri-
bution of random error that occurs for finite sample size.
Both these approaches play a role in controlling the statisti-
cal error for general estimates.

One of the most basic physical quantities for which accu-
rate estimates are required is the kinetic energy of a system
(the electronic Kinetic energy for the examples considered
here). Estimates of this are straightforward to construct in
terms of an MC estimate of integrals. Unfortunately, the in-
tegrand generally possesses singularities on hypersurfaces in
3N-dimensional space and so uncontrolled random errors oc-
cur in the form of power law tails in PDFs.

The most direct kinetic energy estimate is provided by the
operator in the Hamiltonian, and takes the form

2 w(EK,
n=1
AlEggl=——""

> w(E,)

n=1

(63)

where K,,=[—%¢'1Vf{1ﬂ]R is a local kinetic energy at a ran-
dom sample point R, in 3N-dimensional space, and w=1
corresponds to standard sampling. This local kinetic energy
possesses singularities for an electron approaching a nucleus,
for an electron approaching another electron, and at the
nodal surface, referred to types 1, 2, and 3 in [1] (this is true
for any ¢ for which the Kato cusp conditions are satisfied,
and for which Vx# 0 on the nodal surface). For standard
sampling, these singularities remain present in the sampled
quantity, and the CLT is weakly valid in the sense that x™*
asymptotic tails are present in the PDF of the estimate for
finite sample size. For residual sampling, type 3 singularities
are removed, but types 1 and 2 remain, hence again the CLT
is weakly valid. In both cases the error is dominated by the
presence of singularities of types 1 and 2, and these are un-
avoidable in the sense that they will be present for the exact
wave function.
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FIG. 9. Estimated PDFs for kinetic energy estimates constructed
from different sampling strategies. The unfilled solid curve is for
standard sampling, and the gray filled curve for residual sampling.
In both cases, a kernel estimate of the PDF was constructed from
103 kinetic energy estimates, with each kinetic energy estimate con-
structed from =103 samples.

Green’s first theorem provides the means to remove the
type 1 and 2 singularities, giving a new estimate of the form

r

1 > w(E,F?
AlEkg]= En:lr—7 (64)
> w(E,)

n=1

where Fi:%[EiFi-Fi]Rn, with the sum over all electrons, and
F,= 'V, the drift velocity vector of electron i.

The distribution of the random error in the estimate for
both the standard and residual sampling case can be obtained
in the same way as for the total energy and residual variance
estimates considered previously. The sole difference is in the
order of the singularities present in the averaged field vari-
able. For standard sampling the analysis shows that the sum
of random variables that make up the estimate does not obey
the CLT, and an infinite variance Stable distribution with
x7'2 tails results. For residual sampling, the summed random
variables are bounded, hence all co-moments exist, the bi-
variate CLT is valid in its strongest form, and Fieller’s theo-
rem provides a confidence interval for the estimated kinetic
energy. Figure 9 shows a kernel estimate of the PDF for
kinetic energy estimates of the same carbon trial wave func-
tion described earlier. The figure explicitly shows the failure
of the CLT for standard sampling, and the improved estimate
resulting from residual variance sampling, both using Eq.
(64).

If we compare the results from the two different types of
estimator, Eq. (64) with residual sampling provides Egg
=37.894(17) a.u., whereas Eq. (63) with standard sampling
gives Ex;=37.879(48) a.u. Standard sampling requires eight
times as many samples as residual sampling to provide the
same accuracy for kinetic energy estimates, and, in addition,
to obtain the confidence intervals for standard sampling it
must be assumed that enough samples have been taken for
the power law tails to be unimportant.
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Finally, we note that residual sampling can only handle
singularities at the nodal surface. For many estimates a
“transfer” of singularities with types 1 and 2 to the nodal
surface may be achieved using “zero-variance, zero-bias”
corrections of the form described by Assaraf and Caffarel
[13-16]. However, there may be quantities for which esti-
mates that possess no type 1 or type 2 singularities are un-
available. Estimates of such quantities may be still be con-
structed using a more general sampling strategy defined by
the estimator

n=1

= (65)

r k]

N | =

.1 2wG)G,
. {«MGI@]

(R
> w(G,)

n=1

where Gn=[¢//‘1(A}¢]Rn. The sampling strategy would be de-
fined by choosing w to be a function of G,, that ensures that
the summands are bounded, all co-moments exist, and so the
strongest limit theorems apply.

VI. CONCLUSION

Previously it has been shown that the distribution of sta-
tistical errors in the estimates of the two most important
basic quantities of variational QMC, provided by the most
common standard sampling implementation of the method,
result in an uncontrolled statistical error. This results in the
presence of unexpected outliers in estimates, and the failure
of the CLT. Here a more general sampling strategy is used,
referred to as residual sampling. Residual sampling prevents
the artificial introduction of singularities in the sampled
quantities that is an inherent part of the standard sampling
strategy, and the accompanying statistical difficulties. The
new sampling strategy reintroduces the CLT for the total
energy and residual variance in a strong form such that the
deviation of the distribution from normal for finite sample
size is known and is bounded.

The “cost” of residual sampling is that the local energy
must be evaluated in order to generate sample points with the
required distribution, increasing computational expense, and
that the interpretation of the random error in estimates is
more complicated as the estimate must be considered as a
quotient of two correlated random variables, rather than a
single random variable.

The price of computational cost and complexity may be
justifiable for estimating the total energy. Numerical results
for an isolated all-electron carbon atom suggest that residual
sampling provides a modest improvement in the error of the
estimated total energy for the all-electron carbon atom con-
sidered, since for this case leptokurtotic power law tails are
weak for achievable sample sizes. However, it should be
borne in mind that these tails may be stronger for other sys-
tems, cannot be accurately (that is without bias) estimated,
and are completely removed by residual sampling.

The increases in cost and complexity are justifiable for
estimating the residual variance, since residual sampling pro-
vides a qualitative as well as quantitative improvement to
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estimates. The analysis and numerical data clearly show that
residual sampling provides a controlled and small random
error, unlike the standard sampling case. This approach to
controlling the random error in estimates is also expected to
be important for other physical quantities—the CLT has been
shown to be invalid for several estimates [1] and residual
sampling, or a variant of residual sampling, provides a natu-
ral approach to achieving a normal distribution of random
error.

A primary application of the sampling strategies described
is expected to be the optimization of trial wave functions. A
considerably smaller number of samples are expected to be
required to obtain an accurate minimum, since the random
error of the optimized quantity is not normal for standard
sampling but is described by a bivariate normal distribution
for residual sampling. Residual sampling also does not re-
quire the introduction of ad hoc stabilization methods, such
as weight limiting [17]. A further feature of the new sam-
pling strategy is that it samples the trial wave function close
to the nodal surface—the standard sampling method avoids
sampling here—the region where the accuracy of the trial

PHYSICAL REVIEW E 77, 016704 (2008)

wave function influences the accuracy of subsequent diffu-
sion Monte Carlo (DMC) calculations [18].

An analysis of the statistical errors of estimated quantities
in VMC has not previously been available in the literature.
An assumption of a valid CLT has repeatedly been relied
upon to justify methods and results, for both the estimation
of physical quantities and optimization of trial wave func-
tions. The analysis and residual sampling approach described
here provide a method for predicting the random errors in
QMC, and designing new sampling strategies that control
and reduce the random error. It also provides the possibility
of preferentially optimizing a trial wave function in the re-
gion of the nodal surface, and so providing a new means to
control the fixed node error of DMC methods.
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